THE AXIOM OF SPHERES IN RIEMANNIAN GEOMETRY

DOMINIC S. LEUNG & KATSUMI NOMIZU

In his book on Riemannian geometry [1] Elie Cartan defined the axiom of r-planes as follows. A Riemannian manifold M of dimension $n \ge 3$ satisfies the axiom of r-planes, where r is a fixed integer $2 \le r < n$, if for each point p of M and any r-dimensional subspace S of the tangent space $T_p(M)$ there exists an r-dimensional totally geodesic submanifold V containing p such that $T_p(V) = S$. He proved that if M satisfies the axiom of r-planes for some r, then M has constant sectional curvature [1, § 211].

We propose

Axiom of r-spheres. For each point p of M and any r-dimensional subspace S of $T_p(M)$, there exists an r-dimensional umbilical submanifold V with parallel mean curvature vector field such that $p \in V$ and $T_p(V) = S$.

We shall prove

Theorem. If a Riemannian manifold M of dimension $n \ge 3$ satisfies the axiom of r-spheres for some $r, 2 \le r < n$, then M has constant sectional curvature.

The special case where r = n - 1 was proved by J. A. Schouten (see [3, p. 180]). In this case the condition of parallel mean curvature vector field simply means constancy of the mean curvature.

1. Preliminaries

Let M be a Riemannian manifold of class C^{∞} , and let V be a submanifold. The Riemannian connections of M and V are denoted by V and V', respectively, whereas the normal connection (in the normal bundle of V in M) is denoted by V^{\perp} . The second fundamental form α is defined by

$$\nabla_X Y = \nabla'_X Y + \alpha(X, Y)$$
,

where X and Y are vector fields tangent to V. On the other hand, for any vector field ξ normal to V, the tensor field A_{ξ} of type (1,1) on V is given by

$$\nabla_X \xi = -A_{\xi}(X) + \nabla_X^{\perp} \xi$$
,

where X is a vector field tangent to V. We have

Received December 7, 1970.

$$g(\alpha(X, Y), \xi) = g(A_{\varepsilon}X, Y)$$

for X and Y tangent to V and ξ normal to V, where g is the Riemannian metric on M.

Among the fundamental facts we recall the following equation of Codazzi (which is essentially equivalent to that given in [2, p. 25]):

(*) For X and Y tangent to V and ξ normal to V, the tangential component of $R(X, Y)\xi$ is equal to

$$(\overline{V}'_YA_{\varepsilon})(X)-(\overline{V}'_XA_{\varepsilon})(Y)+A_{p_X^{\perp}\varepsilon}(Y)-A_{p_Y^{\perp}\varepsilon}(X)\ .$$

Here R is the curvature tensor of M.

The mean curvature vector field η of V in M is defined by the relation

trace
$$A_{\xi}/r = g(\xi, \eta)$$
 for all ξ normal to V ,

where $r = \dim V$. We say that η is parallel (with respect to the normal connection) if $V^{\perp} \eta = 0$.

We say that V is umbilical in M if

$$\alpha(X, Y) = g(X, Y)\eta$$
 for all X and Y tangent to V.

Equivalently, V is umbilical in M if

$$A_{\xi} = g(\xi, \eta)I$$
 for all ξ normal to V ,

where I is the identity transformation. An umbilical submanifold is totally geodesic if and only if η vanishes on V.

A word of explanation may be in order. If M is a space of constant sectional curvature, then an umbilical submanifold V has parallel mean curvature vector field. V is also contained in a totally geodesic submanifold of M of one higher dimension. When M is one of the standard models of spaces of constant sectional curvature, that is, R^n , S^n and H^n , one can thus determine all connected, complete umbilical submanifolds.

2. Proof of theorem

To prove that M has constant sectional curvature we use

Lemma [1, § 212]. If g(R(X, Y)Z, X) = 0 whenever X, Y and Z are three orthonormal tangent vectors of M, then M has constant sectional curvature.

For the sake of completeness we give a simple proof of this lemma. For X, Y, and Z orthonormal, let

$$Y' = (Y + Z)/\sqrt{2}$$
 and $Z' = (Y - Z)/\sqrt{2}$.

Since X, Y' and Z' are again orthonormal, we have

$$g(R(X, Y')Z', X) = 0,$$

from which we get

$$g(R(X, Y)Y, X) = g(R(X, Z)Z, X)$$
.

This means that the sectional curvature for the 2-plane $X \wedge Y$ is equal to that of the 2-plane $X \wedge Z$. It is easily seen that all the 2-planes (at each point) have the same sectional curvature. By Schur's theorem, M is a space of constant sectional curvature (dim $M \geq 3$).

Now, in order to prove the theorem, let X, Y and Z be three orthonormal vectors in $T_p(M)$, where p is an arbitrary point of M, and let S be an r-dimensional subspace of $T_p(M)$ containing X and Y and normal to Z. By the axiom there exists an r-dimensional umbilical submanifold V with parallel mean curvature vector field η such that $p \in V$ and $T_p(V) = S$. Let U be a normal neighborhood of p in V. For each point $q \in U$, let ξ_q be the normal vector at q to V which is parallel to Z with respect to the normal connection V^{\perp} along the geodesic from p to q in U. Along each geodesic we have $g(\xi, \eta) = \text{constant}$, say, λ , so that $A_{\xi} = \lambda I$ at every point of U. Thus

$$\nabla'_{x}A_{\varepsilon} = \nabla'_{x}A_{\varepsilon} = 0$$
 at p .

We have also

$$\nabla_{\mathbf{r}}^{\perp} \xi = \nabla_{\mathbf{r}}^{\perp} \xi = 0$$
 at p .

Now the equation of Codazzi (*) implies that the tangential component (namely, the S-component) of R(X, Y)Z is 0. In particular, g(R(X, Y)Z, X) = 0. By the lemma we conclude that M has constant sectional curvature.

We wish to conclude with the following remark. If we drop in the axiom of spheres the requirement that V has parallel mean curvature vector field, then this weaker axiom for $n \ge 4$ and r = n - 1 implies that M is conformally flat (see [3, p. 180]). It is easy to extend this result to the case $3 \le r < n$.

References

- [1] E. Cartan, Leçons sur la géométrie des espaces de Riemann, Gauthier-Villars, Paris, 1946.
- [2] S. Kobayashi & K. Nomizu, Foundations of differential geometry, Vol. II, Wiley-Interscience, New York, 1969.
- [3] J. A. Schouten, Der Ricci-Kalkül, Springer, Berlin, 1924.

BROWN UNIVERSITY